Chapter 2 - Resultant of Coplanar Force Systems

1. The screw eye is subjected to two forces, F_1 and F_2 . Determine the magnitude and direction of the resultant force.

Solution. Use the Parallelogram Law

2. The screw eye is subjected to two forces, F_1 and F_2 . Determine the magnitude and direction of the resultant force.

Solution. Use the Triangle Rule

3. The ring shown is subjected to two forces, F_1 and F_2 . If it is required that the resultant force have a magnitude of 1 kN and be directed vertically downward, determine (a) the magnitudes of F_1 and F_2 provided $\theta = 30^\circ$, and (b) the magnitudes of F_1 and F_2 if F_2 is to be a minimum.

4. Determine the magnitude and direction θ of **F** so that this force has components of 40 N acting from A toward B and 60 N acting from A toward C on the frame.

Solution.

5. The force **F** acting on the frame has a magnitude of 500 N and is to be resolved into two components acting along members AB and AC. Determine the angle θ , measured below the horizontal, so that the component **F**_{AC} is directed from A toward C and has a magnitude of 400 N.

Solution.

Adding Force Vectors Graphically [You will need a protractor and ruler to complete this problem]

6. Determine the magnitude and direction of the resultant for the forces acting on the flange shown in Fig 1 graphically (Graph paper is attached.)

Fig. 1

7. Using the method of rectangular components, find the **resultant** of the following concurrent forces.

Solution. Note: All angles measured CCW from the +x axis

Force (lb)	Direction (θ)	$F_x = F \cos \theta$ (lb)	$F_y = F \sin \theta$ (lb)
		$\Sigma F_x =$	$\Sigma F_y =$

8. Three plates are connected using welds with concurrent forces applied as shown. Calculate the **resultant** of the forces.

Solution.

Note: All angles measured CCW from the +x axis

Force (lb)	Direction (θ)	$F_x = F \cos \theta$ (lb)	$F_y = F \sin \theta$ (lb)
		$\Sigma F_x =$	$\Sigma F_y =$